منابع مشابه
Compact operators on Banach spaces: Fredholm-Riesz
1. Compact operators on Banach spaces 2. Appendix: total boundedness and Arzela-Ascoli [Fredholm 1900/1903] treated compact operators as limiting cases of finite-rank operators. [1] [Riesz 1917] defined and made direct use of the compactness condition, more apt for Banach spaces. See [Riesz-Nagy 1952] for extensive discussion in the Hilbert-space situation, and many references to original paper...
متن کاملRiesz Bases for p-Subordinate Perturbations of Normal Operators
For p-subordinate perturbations of unbounded normal operators, the change of the spectrum is studied and spectral criteria for the existence of a Riesz basis with parentheses of root vectors are established. A Riesz basis without parentheses is obtained under an additional a priori assumption on the spectrum of the perturbed operator. The results are applied to two classes of block operator mat...
متن کاملNotes on Fredholm operators
(2) If K ∈ B(X) is compact, then for all λ ∈ C \ {0}, K − λ1 is Fredholm with index zero. (3) The shift operator S± ∈ B(`p) for 1 ≤ p ≤ ∞ defined by (S±x)n = xn±1 is Fredholm with index ±1. (4) If X,Y are finite dimensional and T ∈ B(X,Y ), then by the Rank-Nullity Theorem, ind(T ) = dim(X)− dim(Y ). Lemma 3. Suppose E,F ⊆ X are closed subspaces with F finite dimensional. (1) The subspace E + F...
متن کاملImproved Bounds for Bochner-riesz and Maximal Bochner-riesz Operators
In this note we improve the known L p-bounds for Bochner-Riesz operators and their maximal operators.
متن کاملRiesz Composition Operators
We give a sufficient condition for a univalently induced composition operator on the Hardy space H2 to be a Riesz operator. We then establish that every Riesz composition operator has a Koenigs model and explore connections our work has with the model theory and spectral theory of composition operators.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1968
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1968-12083-x